$cos\Bigg(2x+\dfrac{\pi}{6}\Bigg)+cosx=0$
$⇔ 2cos\Bigg(\dfrac{2x+\dfrac{\pi}{6}+x}{2}\Bigg).cos\Bigg(\dfrac{2x+\dfrac{\pi}{6}-x}{2}\Bigg)=0$
$⇔ \left[ \begin{array}{l}cos\Bigg(\dfrac{3x+\dfrac{\pi}{6}}{2}\Bigg)=0\\cos\Bigg(\dfrac{x+\dfrac{\pi}{6}}{2}\Bigg)=0\end{array} \right.$
$⇔ \left[ \begin{array}{l}\dfrac{18x+\pi}{12}=\dfrac{\pi}{2}+k\pi\\\dfrac{6x+\pi}{12}=\dfrac{\pi}{2}+k\pi\end{array} \right.$
$⇔ \left[ \begin{array}{l}x=\dfrac{5\pi}{18}+\dfrac{2k\pi}{3}\\x=\dfrac{5\pi}{6}+k2\pi\end{array} \right.$ $(k∈Z)$
------------------------
Công thức biến đổi tổng thành tích: $cosa+cosb=2cos\dfrac{a+b}{2}cos\dfrac{a-b}{2}$