Đáp án:
\[x = \dfrac{{49}}{9}\]
Giải thích các bước giải:
ĐKXĐ: \(x \ge \dfrac{5}{2}\)
Ta có:
\(\begin{array}{l}
\sqrt {x + 2 + 3\sqrt {2x - 5} } + \sqrt {x - 2 - \sqrt {2x - 5} } + \sqrt {x - \dfrac{1}{2} + 2\sqrt {2x - 5} } = 5\sqrt 2 \\
\Leftrightarrow \sqrt 2 .\left( {\sqrt {x + 2 + 3\sqrt {2x - 5} } + \sqrt {x - 2 - \sqrt {2x - 5} } + \sqrt {x - \dfrac{1}{2} + 2\sqrt {2x - 5} } } \right) = 5\sqrt 2 .\sqrt 2 \\
\Leftrightarrow \sqrt {2.\left( {x + 2 + 3\sqrt {2x - 5} } \right)} + \sqrt {2.\left( {x - 2 - \sqrt {2x - 5} } \right)} + \sqrt {2.\left( {x - \dfrac{1}{2} + 2\sqrt {2x - 5} } \right)} = 10\\
\Leftrightarrow \sqrt {2x + 4 + 6\sqrt {2x - 5} } + \sqrt {2x - 4 - 2\sqrt {2x - 5} } + \sqrt {2x - 1 + 4\sqrt {2x - 5} } = 10\\
\Leftrightarrow \sqrt {\left( {2x - 5} \right) + 6\sqrt {2x - 5} + 9} + \sqrt {\left( {2x - 5} \right) - 2\sqrt {2x - 5} + 1} + \sqrt {\left( {2x - 5} \right) + 4\sqrt {2x - 5} + 4} = 10\\
\Leftrightarrow \sqrt {{{\left( {\sqrt {2x - 5} + 3} \right)}^2}} + \sqrt {{{\left( {\sqrt {2x - 5} - 1} \right)}^2}} + \sqrt {{{\left( {\sqrt {2x - 5} + 1} \right)}^2}} = 10\\
\Leftrightarrow \sqrt {2x - 5} + 3 + \left| {\sqrt {2x - 5} - 1} \right| + \sqrt {2x - 5} + 1 = 10\\
\Leftrightarrow 2\sqrt {2x - 5} + \left| {\sqrt {2x - 5} - 1} \right| = 6\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\
TH1:\,\,\,\,\sqrt {2x - 5} - 1 > 0 \Leftrightarrow \sqrt {2x - 5} > 1 \Leftrightarrow x > 3\\
\left( 1 \right) \Leftrightarrow 2\sqrt {2x - 5} + \left( {\sqrt {2x - 5} - 1} \right) = 6\\
\Leftrightarrow 3\sqrt {2x - 5} = 7\\
\Leftrightarrow \sqrt {2x - 5} = \dfrac{7}{3}\\
\Leftrightarrow 2x - 5 = \dfrac{{49}}{9}\\
\Leftrightarrow x = \dfrac{{47}}{9}\,\,\,\,\,\,\,\,\,\,\left( {t/m} \right)\\
TH2:\,\,\,\,\,\,\,\,\sqrt {2x - 5} - 1 \le 0 \Leftrightarrow \sqrt {2x - 5} \le 1 \Leftrightarrow \dfrac{5}{2} \le x \le 3\\
\left( 1 \right) \Leftrightarrow 2\sqrt {2x - 5} + \left( {1 - \sqrt {2x - 5} } \right) = 6\\
\Leftrightarrow \sqrt {2x - 5} = 5\,\,\,\,\,\,\,\,\,\,\,\left( {L,\,\,\,\sqrt {2x - 5} \le 1} \right)
\end{array}\)
Vậy \(x = \dfrac{{49}}{9}\)