Đáp án: \(\left[ \begin{array}{l}x = -\dfrac{π}{4} + arcsin (-\dfrac{\sqrt{2}}{4}) + k2π\\x = \dfrac{3π}{4} - arcsin (-\dfrac{\sqrt{2}}{4}) + k2π\end{array} \right.\) `(k ∈ ZZ)`
Giải thích các bước giải:
`3(sin x + cos x) = 2sin 2x`
`<=> 3(sin x + cos x) = 2.2.sin x.cos x` `(1)`
Đặt `t = sin x + cos x`
`=> 2.sin x.cos x = t² - 1`
`(1)`
`=> 3t = 2t² - 2`
`<=> 2t² - 3t - 2 = 0`
`<=>` \(\left[ \begin{array}{l}t = 2 (l)\\t = -\dfrac{1}{2}\end{array} \right.\)
`<=> t = -1/2`
`<=> sin x + cos x = -1/2`
`<=> sqrt{2}(1/(\sqrt{2})sin x + 1/(\sqrt{2}).cos x) = -1/2`
`<=> sin (x + π/4) = sin (-(\sqrt{2})/4)`
`<=>` \(\left[ \begin{array}{l}x + \dfrac{π}{4} = arcsin (-\dfrac{\sqrt{2}}{4}) + k2π\\x + \dfrac{π}{4} = π - arcsin (-\dfrac{\sqrt{2}}{4}) + k2π\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x = -\dfrac{π}{4} + arcsin (-\dfrac{\sqrt{2}}{4}) + k2π\\x = \dfrac{3π}{4} - arcsin (-\dfrac{\sqrt{2}}{4}) + k2π\end{array} \right.\) `(k ∈ ZZ)`