Đáp án:
`a)` \(\left[ \begin{array}{l}x = ±\frac{π}{6}\\x = ±\frac{π}{3}\end{array} \right.\) `(k ∈ ZZ)`
`b)` \(\left[ \begin{array}{l}x = \frac{π}{4} + k\frac{π}{2}\\x = kπ\end{array} \right.\) `(k ∈ ZZ)`
`c)` \(\left[ \begin{array}{l}x = k\frac{π}{3}\\x = \frac{π}{2} + kπ\end{array} \right.\) `(k ∈ ZZ)`
Giải thích các bước giải:
`a) cos² 2x = 1/4`
`<=>` \(\left[ \begin{array}{l}cos 2x = frac{1}{2}\\cos 2x = -\frac{1}{2}\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}2x = ±\frac{π}{3}\\2x = ±\frac{2π}{3}\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x = ±\frac{π}{6}\\x = ±\frac{π}{3}\end{array} \right.\) `(k ∈ ZZ)`
`b) cos 2x.tan x = 0`
`ĐKXĐ: x ne (π)/2 + kπ`
`=>` \(\left[ \begin{array}{l}cos 2x = 0\\tan x = 0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}2x = \frac{π}{2} + kπ\\sin x = 0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x = \frac{π}{4} + k\frac{π}{2}\\x = kπ\end{array} \right.\) `(k ∈ ZZ)`
`c) sin 3x.cot x = 0`
`ĐKXĐ: x ne kπ`
`=>` \(\left[ \begin{array}{l}sin 3x = 0\\cot x = 0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}3x = kπ\\x = \frac{π}{2} + kπ\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x = k\frac{π}{3}\\x = \frac{π}{2} + kπ\end{array} \right.\) `(k ∈ ZZ)`