Đáp án:
Giải thích các bước giải:
$\sqrt{3}cos5x-sin5x=2cos3x$
⇔$2.cos(5x+\frac{\pi}{6})=2cos3x$
⇔$cos(5x+\frac{\pi}{6})=cos3x$
$TH1: 5x+\frac{\pi}{6}=3x+k2\pi$
⇔$2x=-\frac{\pi}{6}+k2\pi$
⇔$x=-\frac{\pi}{12}+k\pi$
$TH2: 5x+\frac{\pi}{6}=-3x+k2\pi$
⇔$8x=-\frac{\pi}{6}+k2\pi$
⇔$x=-\frac{\pi}{48}+k\pi/4$