`\sqrt{3} cos(x) - sin(x) = \sqrt{2}`
`⇔ \sqrt{3} cos(x) = \sqrt{2} + sin(x)`
`⇔ 3cos^2(x) - 2 - 2\sqrt{2} sin(x) - sin^2(x) = 0`
`⇔ 1 - 4sin^2(x) - 2sin(x)\sqrt{2} = 0`
`⇔ sin(x) = -(\sqrt{2}+\sqrt{6})/4 , sin(x) = (\sqrt{6}-\sqrt{2})/4`
`⇔ x = arcsin(-(\sqrt{2}+\sqrt{6})/4) + 2πn , x=arcsin((\sqrt{6}-\sqrt{2})/4) + 2πn`