Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
e,\\
2{\cos ^2}2x = 1\\
\Leftrightarrow {\cos ^2}2x = \dfrac{1}{2}\\
\Leftrightarrow \left[ \begin{array}{l}
\cos 2x = \dfrac{{\sqrt 2 }}{2}\\
\cos 2x = - \dfrac{{\sqrt 2 }}{2}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x = \pm \dfrac{\pi }{4} + k2\pi \\
2x = \pm \dfrac{{3\pi }}{4} + k2\pi
\end{array} \right.\\
\Leftrightarrow 2x = \dfrac{\pi }{4} + \dfrac{{k\pi }}{2}\\
\Leftrightarrow x = \dfrac{\pi }{8} + \dfrac{{k\pi }}{4}\\
f,\\
4{\cos ^2}4x = 1\\
\Leftrightarrow {\cos ^2}4x = \dfrac{1}{4}\\
\Leftrightarrow \left[ \begin{array}{l}
\cos 4x = \dfrac{1}{2}\\
\cos 4x = - \dfrac{1}{2}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
4x = \pm \dfrac{\pi }{3} + k2\pi \\
4x = \pm \dfrac{{2\pi }}{3} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \pm \dfrac{\pi }{{12}} + \dfrac{{k\pi }}{2}\\
x = \pm \dfrac{\pi }{6} + \dfrac{{k\pi }}{2}
\end{array} \right.\\
g,\\
4{\cos ^2}5x = 3\\
\Leftrightarrow {\cos ^2}5x = \dfrac{3}{4}\\
\Leftrightarrow \left[ \begin{array}{l}
\cos 5x = \dfrac{{\sqrt 3 }}{2}\\
\cos 5x = - \dfrac{{\sqrt 3 }}{2}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
5x = \pm \dfrac{\pi }{6} + k2\pi \\
5x = \pm \dfrac{{5\pi }}{6} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \pm \dfrac{\pi }{{30}} + \dfrac{{k2\pi }}{5}\\
x = \pm \dfrac{\pi }{6} + \dfrac{{k2\pi }}{5}
\end{array} \right.\\
h,\\
8{\cos ^2}x = 3\\
\Leftrightarrow {\cos ^2}x = \dfrac{3}{8}\\
\Leftrightarrow \left[ \begin{array}{l}
\cos x = \dfrac{{\sqrt 6 }}{4}\\
\cos x = - \dfrac{{\sqrt 6 }}{4}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \pm \arccos \dfrac{{\sqrt 6 }}{4} + k2\pi \\
x = \pm \arccos \left( { - \dfrac{{\sqrt 6 }}{4}} \right) + k2\pi
\end{array} \right.
\end{array}\)