Bài 1:
1) $\cos\left(x-\dfrac{\pi}{4}\right)=\dfrac{-1}{2}$
$\to x-\dfrac{\pi}{4}=\pm \dfrac{2\pi}{3}+k2\pi$
$\to \left[ \begin{array}{l}x=\dfrac{11\pi}{12}+k2\pi \\x=\dfrac{-5\pi}{12}+k2\pi \end{array} \right.$
Mà $0\le x\le \pi$
$\to x=\dfrac{11\pi}{12}$
2) $\sqrt3\sin3x-\cos3x=\sqrt2$
$\to 2\sin\left(3x-\dfrac{\pi}{6}\right)=\sqrt2$
$\to \sin\left(3x-\dfrac{\pi}{6}\right)=\dfrac{\sqrt2}{2}$
$\to \left[ \begin{array}{l}x=\dfrac{5\pi}{36}+\dfrac{k2\pi}{3} \\x=\dfrac{11\pi}{36}+\dfrac{k2\pi}{3} \end{array} \right.$
Bài 2:
a,
$y=\sin x+\cos x$ có TXĐ $D=\mathbb{R}$
c,
$y=\dfrac{1+\tan x}{\sin x}$
ĐK: $\begin{cases}\sin x\ne 0\\ \cos x\ne 0\end{cases}$
$\to \sin2x=2\sin x\cos x\ne 0$
$\to 2x\ne k\pi$
$\to x\ne k\dfrac{\pi}{2}$
Vậy $D=\mathbb{R}$ \ $\left\{ \dfrac{k\pi}{2}\right\}$