Đáp án:
42) \(\dfrac{{2a + 2\sqrt a + 2}}{{\sqrt a }}\)
Giải thích các bước giải:
\(\begin{array}{l}
M = \left[ {\dfrac{{2x\sqrt x + x - \sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}} - \dfrac{{\sqrt x \left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}} \right].\dfrac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x + 1} \right)\left( {2\sqrt x - 1} \right)}} + \dfrac{{\sqrt x }}{{2\sqrt x - 1}}\\
= \dfrac{{2x\sqrt x + x - \sqrt x - \sqrt x \left( {x + \sqrt x + 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}.\dfrac{{\sqrt x - 1}}{{2\sqrt x - 1}} + \dfrac{{\sqrt x }}{{2\sqrt x - 1}}\\
= \dfrac{{2x\sqrt x + x - \sqrt x - x\sqrt x - x - \sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}.\dfrac{{\sqrt x - 1}}{{2\sqrt x - 1}} + \dfrac{{\sqrt x }}{{2\sqrt x - 1}}\\
= \dfrac{{x\sqrt x - 2\sqrt x }}{{x + \sqrt x + 1}}.\dfrac{1}{{2\sqrt x - 1}} + \dfrac{{\sqrt x }}{{2\sqrt x - 1}}\\
= \dfrac{{x\sqrt x - 2\sqrt x + \sqrt x \left( {x + \sqrt x + 1} \right)}}{{\left( {x + \sqrt x + 1} \right)\left( {2\sqrt x - 1} \right)}}\\
= \dfrac{{x\sqrt x - 2\sqrt x + x\sqrt x + x + \sqrt x }}{{\left( {x + \sqrt x + 1} \right)\left( {2\sqrt x - 1} \right)}}\\
= \dfrac{{2x\sqrt x - \sqrt x + x}}{{\left( {x + \sqrt x + 1} \right)\left( {2\sqrt x - 1} \right)}}\\
42)A = \dfrac{{\left( {\sqrt a - 1} \right)\left( {a + \sqrt a + 1} \right)}}{{\sqrt a \left( {\sqrt a - 1} \right)}} - \dfrac{{\left( {\sqrt a + 1} \right)\left( {a - \sqrt a + 1} \right)}}{{\sqrt a \left( {\sqrt a + 1} \right)}} + \dfrac{{a - 1}}{{\sqrt a }}.\dfrac{{a + 2\sqrt a + 1 + a - 2\sqrt a + 1}}{{a - 1}}\\
= \dfrac{{a + \sqrt a + 1 - a + \sqrt a - 1}}{{\sqrt a }} + \dfrac{{2a + 2}}{{\sqrt a }}\\
= \dfrac{{2a + 2\sqrt a + 2}}{{\sqrt a }}
\end{array}\)