Đáp án:
\(\begin{array}{l}
a,\\
x = \dfrac{{144}}{{25}}\\
b,\\
x = 11
\end{array}\)
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
DKXD:\,\,x \ge 0\\
- 5x + 7\sqrt x + 12 = 0\\
\Leftrightarrow 5x - 7\sqrt x - 12 = 0\\
\Leftrightarrow 5{\sqrt x ^2} - 7\sqrt x - 12 = 0\\
\Leftrightarrow \left( {5{{\sqrt x }^2} - 12\sqrt x } \right) + \left( {5\sqrt x - 12} \right) = 0\\
\Leftrightarrow \sqrt x .\left( {5\sqrt x - 12} \right) + \left( {5\sqrt x - 12} \right) = 0\\
\Leftrightarrow \left( {5\sqrt x - 12} \right)\left( {\sqrt x + 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
5\sqrt x - 12 = 0\\
\sqrt x + 1 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\sqrt x = \dfrac{{12}}{5}\\
\sqrt x = - 1
\end{array} \right.\\
\sqrt x \ge 0 \Rightarrow \sqrt x = \dfrac{{12}}{5} \Leftrightarrow x = {\left( {\dfrac{{12}}{5}} \right)^2} \Leftrightarrow x = \dfrac{{144}}{{25}}\\
b,\\
DKXD:\,\,\,x \ge - 5\\
\sqrt {4x + 20} - 2\sqrt {x + 5} + \sqrt {9x + 45} = 12\\
\Leftrightarrow \sqrt {4.\left( {x + 5} \right)} - 2\sqrt {x + 5} + \sqrt {9\left( {x + 5} \right)} = 12\\
\Leftrightarrow \sqrt {{2^2}.\left( {x + 5} \right)} - 2\sqrt {x + 5} + \sqrt {{3^2}.\left( {x + 5} \right)} = 12\\
\Leftrightarrow 2\sqrt {x + 5} - 2\sqrt {x + 5} + 3\sqrt {x + 5} = 12\\
\Leftrightarrow 3\sqrt {x + 5} = 12\\
\Leftrightarrow \sqrt {x + 5} = 4\\
\Leftrightarrow x + 5 = {4^2}\\
\Leftrightarrow x + 5 = 16\\
\Leftrightarrow x = 11
\end{array}\)