Đáp án:
a. \(\dfrac{{4x}}{{\sqrt x - 3}}\)
Giải thích các bước giải:
\(\begin{array}{l}
a.DK:x > 0;x \ne 4\\
P = \left[ {\dfrac{{4\sqrt x \left( {2 - \sqrt x } \right) + 8x}}{{\left( {2 - \sqrt x } \right)\left( {2 + \sqrt x } \right)}}} \right]:\left[ {\dfrac{{\sqrt x - 1 - 2\sqrt x + 4}}{{\sqrt x \left( {\sqrt x - 2} \right)}}} \right]\\
= \dfrac{{8\sqrt x - 4x + 8x}}{{\left( {2 - \sqrt x } \right)\left( {2 + \sqrt x } \right)}}.\dfrac{{ - \sqrt x \left( {2 - \sqrt x } \right)}}{{ - \sqrt x + 3}}\\
= \dfrac{{4x + 8\sqrt x }}{{\left( {2 - \sqrt x } \right)\left( {2 + \sqrt x } \right)}}.\dfrac{{\sqrt x \left( {2 - \sqrt x } \right)}}{{\sqrt x - 3}}\\
= \dfrac{{4\sqrt x .\sqrt x }}{{\sqrt x - 3}}\\
= \dfrac{{4x}}{{\sqrt x - 3}}\\
b.P = - 1\\
\to \dfrac{{4x}}{{\sqrt x - 3}} = - 1\\
\to 4x = - \sqrt x + 3\\
\to 4x + \sqrt x - 3 = 0\\
\to \left[ \begin{array}{l}
\sqrt x = \dfrac{3}{4}\\
\sqrt x = - 1\left( l \right)
\end{array} \right.\\
\to x = \dfrac{9}{{16}}\\
c.m\left( {\sqrt x - 3} \right).\dfrac{{4x}}{{\sqrt x - 3}} > x + 1\\
\to 4xm > x + 1\\
\to x + 1 - 4xm < 0\\
\to x\left( {1 - 4m} \right) + 1 < 0\\
\to x < - \dfrac{1}{{1 - 4m}}\\
Do:x > 9\\
\to - \dfrac{1}{{1 - 4m}} > 9\\
\to \dfrac{1}{{1 - 4m}} < - 9\\
\to \dfrac{{1 + 9 - 36m}}{{1 - 4m}} < 0\\
\to \dfrac{{10 - 36m}}{{1 - 4m}} < 0\\
\to \left[ \begin{array}{l}
\left\{ \begin{array}{l}
10 - 36m > 0\\
1 - 4m < 0
\end{array} \right.\\
\left\{ \begin{array}{l}
10 - 36m < 0\\
1 - 4m > 0
\end{array} \right.
\end{array} \right. \to \left[ \begin{array}{l}
\left\{ \begin{array}{l}
\dfrac{5}{{18}} > m\\
m > \dfrac{1}{4}
\end{array} \right.\\
\left\{ \begin{array}{l}
\dfrac{5}{{18}} < m\\
m < \dfrac{1}{4}
\end{array} \right.\left( l \right)
\end{array} \right.
\end{array}\)