Giải thích các bước giải:
\(lim (\frac{n+2}{n+1}+\frac{sin(n)}{2^{n}})\)
Ta có: \(|\frac{n+2}{n+1}+\frac{sin(n)}{2^{n}}| \leq \frac{n+2}{n+1}+\frac{1}{2^{n}}\)
Mà \(lim(\frac{1+\frac{2}{n}}{1+\frac{1}{n}}+\frac{(\frac{1}{2})^{n}}{1})=1\)
Vậy \(lim (\frac{n+2}{n+1}+\frac{sin(n)}{2^{n}})=1\)