`\color{red}{@\text{Mon}}`
`\text{ Rút gọn:}`
`P=\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{5\sqrt{x}+2}{4-x}`
`=\frac{(\sqrt{x}+1)(\sqrt{x}+2)+2\sqrt{x}(\sqrt{x}-2)-5\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}`
`=\frac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}`
`=\frac{3x-6\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}`
`=\frac{3\sqrt{x}(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)}`
`=\frac{3\sqrt{x}}{\sqrt{x}+2}`
`4)P=\frac{3\sqrt{x}}{\sqrt{x}+2}`
`=\frac{3(\sqrt{x}+2)-6}{\sqrt{x}+2}`
`=3-\frac{6}{\sqrt{x}+2}`
`Để` `P in ZZ:`
`<=>\sqrt{x}+2 in Ư(6)={-6;-3;-2;-1;1;2;3;6}`
`<=>\sqrt{x} in {0;1;4}(Do` `\sqrt{x} >=0)`
`<=>x in {0;1;16}`
`5)P=3-\frac{6}{\sqrt{x}+2}`
`Do` `\sqrt{x} >= 0`
`=>\sqrt{x}+2 >= 2`
`=>\frac{6}{\sqrt{x}+2} <= \frac{6}{2}=3`
`=>3-\frac{6}{\sqrt{x}+2}>=3-3=0` `hay` `P>=0`
`\text{ Dấu "=" xảy ra khi}`
`<=>\sqrt{x}=0`
`<=>x=0`
`\text{ Vậy GTNN của P = 0 }`
`6)x-17\sqrt{x}+90-2P.(\sqrt{x}+2)=0`
`<=>x-17\sqrt{x}+90-2..\frac{3\sqrt{x}}{\sqrt{x}+2}.(\sqrt{x}+2)=0`
`<=>x-17\sqrt{x}+90-6\sqrt{x}=0`
`<=>x-23\sqrt{x}+90=0`
`<=>(\sqrt{x}-18)(\sqrt{x}-5)=0`
`<=>` \(\left[ \begin{array}{l}\sqrt{x}=18\\\sqrt{x}=5\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=324(tm)\\x=25(tm)\end{array} \right.\)