Giải thích các bước giải:
\(\begin{array}{l}
a,\\
\left( { - 2013} \right).2014 + 1007.26\\
= \left( { - 2013} \right).2014 + 1007.2.13\\
= \left( { - 2013} \right).2014 + \left( {1007.2} \right).13\\
= \left( { - 2013} \right).2014 + 2014.13\\
= 2014.\left[ {\left( { - 2013} \right) + 13} \right]\\
= 2014.\left( { - 2000} \right)\\
= - 4028000\\
b,\\
\left( {\frac{{1313}}{{1414}} + \frac{{10}}{{160}}} \right) - \left( {\frac{{130}}{{140}} - \frac{{1515}}{{1616}}} \right)\\
= \left( {\frac{{1300 + 13}}{{1400 + 14}} + \frac{{10}}{{16.10}}} \right) - \left( {\frac{{13.10}}{{14.10}} - \frac{{1500 + 15}}{{1600 + 16}}} \right)\\
= \left( {\frac{{13.100 + 13}}{{14.100 + 14}} + \frac{1}{{16}}} \right) - \left( {\frac{{13}}{{14}} - \frac{{15.100 + 15}}{{16.100 + 16}}} \right)\\
= \left( {\frac{{13.101}}{{14.101}} + \frac{1}{{16}}} \right) - \left( {\frac{{13}}{{14}} - \frac{{15.101}}{{16.101}}} \right)\\
= \left( {\frac{{13}}{{14}} + \frac{1}{{16}}} \right) - \left( {\frac{{13}}{{14}} - \frac{{15}}{{16}}} \right)\\
= \frac{{13}}{{14}} + \frac{1}{{16}} - \frac{{13}}{{14}} + \frac{{15}}{{16}}\\
= 1
\end{array}\)