Đáp án:
$\begin{array}{l}
1)a)\\
- \dfrac{1}{2} + \dfrac{{ - 7}}{{24}} + \dfrac{{19}}{{24}}\\
= - \dfrac{1}{2} + \dfrac{{ - 7 + 19}}{{24}}\\
= - \dfrac{1}{2} + \dfrac{{12}}{{24}}\\
= \dfrac{{ - 1}}{2} + \dfrac{1}{2} = 0\\
b)\dfrac{2}{3} - \dfrac{5}{7}.\dfrac{{14}}{{25}}\\
= \dfrac{2}{3} - \dfrac{2}{5}\\
= \dfrac{{10}}{{15}} - \dfrac{6}{{15}}\\
= \dfrac{4}{{15}}\\
c)\dfrac{3}{8}.\dfrac{7}{{11}} + \dfrac{4}{{11}}.\dfrac{3}{8} - 2\dfrac{3}{8}\\
= \dfrac{3}{8}.\left( {\dfrac{7}{{11}} + \dfrac{4}{{11}}} \right) - 2 - \dfrac{3}{8}\\
= \dfrac{3}{8}.\dfrac{{11}}{{11}} - 2 - \dfrac{3}{8}\\
= \dfrac{3}{8} - 2 - \dfrac{3}{8}\\
= - 2\\
d)\dfrac{4}{5}.0,25 + \left( {75\% + \dfrac{9}{{20}}} \right):\dfrac{8}{5}\\
= \dfrac{4}{5}.\dfrac{1}{4} + \left( {\dfrac{3}{4} + \dfrac{9}{{20}}} \right).\dfrac{5}{8}\\
= \dfrac{1}{5} + \left( {\dfrac{{15 + 9}}{{20}}} \right).\dfrac{5}{8}\\
= \dfrac{1}{5} + \dfrac{{24}}{{20}}.\dfrac{5}{8}\\
= \dfrac{1}{5} + \dfrac{3}{4}\\
= \dfrac{{4 + 15}}{{20}} = \dfrac{{19}}{{20}}\\
2)a)10 - 3\left( {x - 1} \right) = - 5\\
\Rightarrow 3.\left( {x - 1} \right) = 10 - \left( { - 5} \right) = 15\\
\Rightarrow x - 1 = 5\\
\Rightarrow x = 6\\
b)x + \dfrac{5}{{12}} = - \dfrac{2}{3}\\
\Rightarrow x = - \dfrac{2}{3} - \dfrac{5}{{12}}\\
\Rightarrow x = \dfrac{{ - 8 - 5}}{{12}}\\
\Rightarrow x = \dfrac{{ - 13}}{{12}}\\
c)\dfrac{2}{5} + \dfrac{3}{5}:x = \dfrac{3}{{20}}\\
\Rightarrow \dfrac{3}{5}:x = \dfrac{3}{{20}} - \dfrac{2}{5}\\
\Rightarrow \dfrac{3}{5}:x = \dfrac{{ - 5}}{{20}} = - \dfrac{1}{4}\\
\Rightarrow x = \dfrac{3}{5}:\left( { - \dfrac{1}{4}} \right)\\
\Rightarrow x = \dfrac{3}{5}.\left( { - 4} \right)\\
\Rightarrow x = - \dfrac{{12}}{5}\\
d)\left| {x - \dfrac{3}{7}} \right| = \dfrac{3}{4} + \dfrac{1}{2}\\
\Rightarrow \left| {x - \dfrac{3}{7}} \right| = \dfrac{5}{4}\\
\Rightarrow \left[ \begin{array}{l}
x - \dfrac{3}{7} = \dfrac{5}{4}\\
x - \dfrac{3}{7} = - \dfrac{5}{4}
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = \dfrac{5}{4} + \dfrac{3}{7} = \dfrac{{47}}{{28}}\\
x = - \dfrac{5}{4} + \dfrac{3}{7} = \dfrac{{ - 23}}{{28}}
\end{array} \right.
\end{array}$