$1) \, y = 2 + \cos^2x - \sin^2x$
$\Leftrightarrow y = 2 + \cos2x$
Ta có:
$-1 \leq \cos2x \leq 1$
$\Leftrightarrow 1 \leq 2 + \cos2x \leq 3$
Hay $1 \leq y \leq 3$
Vậy $\min y = 1 \Leftrightarrow \cos2x = -1 \Leftrightarrow x = \dfrac{\pi}{2} + k\pi$
$\max y = 3 \Leftrightarrow \cos2x = 1 \Leftrightarrow x = k\pi \quad (k \in \Bbb Z)$
$2)\, y = \cos^2x - 2\sqrt3\cos x\sin x + 1$
$\Leftrightarrow y = \dfrac{1 + \cos2x}{2} - \sqrt3\sin2x + 1$
$\Leftrightarrow y = \dfrac{1}{2}\cos2x - \sqrt3\sin2x + \dfrac{3}{2}$
$\Leftrightarrow y - \dfrac{3}{2} = \dfrac{1}{2}\cos2x - \sqrt3\sin2x$
Áp dụng bất đẳng thức $Bunyakovsky$ ta được:
(Phương trình có nghiệm)
$\left(y - \dfrac{3}{2}\right)^2 = \left(\dfrac{1}{2}\cos2x - \sqrt3\sin2x\right)^2 \leq \left(\dfrac{1}{4} + 3\right)(\cos^22x + \sin^22x) = \dfrac{13}{4}$
$\Rightarrow -\dfrac{\sqrt{13}}{2} \leq y - \dfrac{3}{2} \leq \dfrac{\sqrt{13}}{2}$
$\Leftrightarrow \dfrac{3 - \sqrt{13}}{2} \leq y \leq \dfrac{3 + \sqrt{13}}{2}$
Vậy $\min y = \dfrac{3 - \sqrt{13}}{2} \Leftrightarrow \dfrac{1}{2}\cos2x - \sqrt3\sin2x = - \dfrac{\sqrt{13}}{2} \Leftrightarrow x = \dfrac{\pi}{2} - \dfrac{\arccos\dfrac{1}{\sqrt{13}}}{2} + k\pi$
$\max y = \dfrac{3 + \sqrt{13}}{2} \Leftrightarrow \dfrac{1}{2}\cos2x - \sqrt3\sin2x = \dfrac{\sqrt{13}}{2} \Leftrightarrow x = -\dfrac{\arccos\dfrac{1}{\sqrt{13}}}{2} + k\pi \quad (k \in \Bbb Z)$