`a) 3\sqrt{5}=\sqrt{9.5}=\sqrt{45}>\sqrt{32}=\sqrt{16.2}=4\sqrt{2}`
Vậy `3\sqrt{5}>4\sqrt{2}`
`b) 5\sqrt{2}=\sqrt{25.2}=\sqrt{50}>\sqrt{20}=\sqrt{4.5}=2\sqrt{5}`
Vậy `5\sqrt{2}>2\sqrt{5}`
`c) 6\sqrt{2}=\sqrt{36.2}=\sqrt{72}>\sqrt{3/2}=\sqrt{1/4. 6}=1/2\sqrt{6}`
Vậy `6\sqrt{2}>1/2\sqrt{6}`
`d)` Ta có:
`\qquad (\sqrt{2014}+\sqrt{2016})^2`
`=2014+2016+2\sqrt{2014}.\sqrt{2016}`
`=4030+2\sqrt{2014.2016}`
`=2.2015+2\sqrt{(2015-1)(2015+1)}`
`=2.2015+2.\sqrt{2015^2-1}`
`<2.2015+2.\sqrt{2015^2}=4.2015=(2\sqrt{2015})^2`
Vậy `\sqrt{2014}+\sqrt{2016}<2\sqrt{2015}`