Đáp án:
$\begin{array}{l}
a)\sqrt {9 - 4\sqrt 5 } - \sqrt 5 \\
= \sqrt {5 - 2.2.\sqrt 5 + 4} - \sqrt 5 \\
= \sqrt {{{\left( {\sqrt 5 - 2} \right)}^2}} - \sqrt 5 \\
= \sqrt 5 - 2 - \sqrt 5 \\
= - 2\\
b)\dfrac{{\sqrt 2 + 1}}{{\sqrt 2 - 1}} = \dfrac{{\left( {\sqrt 2 + 1} \right)\left( {\sqrt 2 + 1} \right)}}{{2 - 1}}\\
= {\left( {\sqrt 2 + 1} \right)^2}\\
= 3 + 2\sqrt 2 \\
c)2\sqrt 2 \left( {\sqrt 3 - 2} \right) + {\left( {1 + 2\sqrt 2 } \right)^2} - 2\sqrt 6 \\
= 2\sqrt 6 - 4\sqrt 2 + 1 + 4\sqrt 2 + 8 - 2\sqrt 6 \\
= 9\\
d)\sqrt {\dfrac{4}{{{{\left( {2 - \sqrt 5 } \right)}^2}}}} - \sqrt {\dfrac{4}{{{{\left( {2 + \sqrt 5 } \right)}^2}}}} \\
= \dfrac{2}{{\sqrt 5 - 2}} - \dfrac{2}{{2 + \sqrt 5 }}\\
= \dfrac{{2\left( {2 + \sqrt 5 } \right) - 2\left( {\sqrt 5 - 2} \right)}}{{\left( {\sqrt 5 - 2} \right)\left( {\sqrt 5 + 2} \right)}}\\
= \dfrac{{4 + 2\sqrt 5 - 2\sqrt 5 + 4}}{{5 - 4}}\\
= 8\\
e)\left( {3 + \sqrt 5 } \right)\left( {\sqrt {10} - \sqrt 2 } \right)\sqrt {3 - \sqrt 5 } \\
= \dfrac{1}{2}\left( {6 + 2\sqrt 5 } \right).\left( {\sqrt 5 - 1} \right).\sqrt 2 \sqrt {3 - \sqrt 5 } \\
= \dfrac{1}{2}.{\left( {\sqrt 5 + 1} \right)^2}.\left( {\sqrt 5 - 1} \right).\sqrt {6 - 2\sqrt 5 } \\
= \dfrac{1}{2}.{\left( {\sqrt 5 + 1} \right)^2}.\left( {\sqrt 5 - 1} \right).\sqrt {{{\left( {\sqrt 5 - 1} \right)}^2}} \\
= \dfrac{1}{2}.{\left( {\sqrt 5 + 1} \right)^2}.{\left( {\sqrt 5 - 1} \right)^2}\\
= \dfrac{1}{2}.{\left( {5 - 1} \right)^2}\\
= 8\\
f)A = \sqrt {\sqrt 2 + 1} - \sqrt {\sqrt 2 - 1} \\
\Leftrightarrow {A^2} = \sqrt 2 + 1 - 2.\sqrt {\sqrt 2 + 1} .\sqrt {\sqrt 2 - 1} + \sqrt 2 - 1\\
= 2\sqrt 2 - 2.\sqrt {2 - 1} \\
= 2\sqrt 2 - 2\\
= 2\left( {\sqrt 2 - 1} \right)\\
\Leftrightarrow A = \sqrt {2\left( {\sqrt 2 - 1} \right)}
\end{array}$