Đáp án:
$\begin{array}{l}
d)D = \dfrac{{x + 15}}{{\sqrt x + 1}} = \dfrac{{x - 1 + 16}}{{\sqrt x + 1}}\\
= \sqrt x - 1 + \dfrac{{16}}{{\sqrt x + 1}}\\
= \sqrt x + 1 + \dfrac{{16}}{{\sqrt x + 1}} - 2\\
Theo\,Co - si:\\
\sqrt x + 1 + \dfrac{{16}}{{\sqrt x + 1}} \ge 2\sqrt {\left( {\sqrt x + 1} \right).\dfrac{{16}}{{\sqrt x + 1}}} = 8\\
\Leftrightarrow \sqrt x + 1 + \dfrac{{16}}{{\sqrt x + 1}} - 2 \ge 6\\
\Leftrightarrow D \ge 6\\
\Leftrightarrow GTNN:D = 6\,\\
Khi:\sqrt x + 1 = \dfrac{{16}}{{\sqrt x + 1}}\\
\Leftrightarrow \sqrt x + 1 = 4\\
\Leftrightarrow \sqrt x = 3\\
\Leftrightarrow x = 9\left( {tm} \right)\\
d)D = \dfrac{{x + 21}}{{\sqrt x + 2}}\\
= \dfrac{{x - 4 + 25}}{{\sqrt x + 2}}\\
= \sqrt x - 2 + \dfrac{{25}}{{\sqrt x + 2}}\\
= \sqrt x + 2 + \dfrac{{25}}{{\sqrt x + 2}} - 4\\
\ge 2\sqrt {\left( {\sqrt x + 2} \right).\dfrac{{25}}{{\sqrt x + 2}}} - 4\\
\Leftrightarrow D \ge 2\sqrt {25} - 4 = 6\\
\Leftrightarrow GTNN:D = 6\\
Khi:\left( {\sqrt x + 2} \right) = \dfrac{{25}}{{\sqrt x + 2}}\\
\Leftrightarrow \sqrt x + 2 = 5\\
\Leftrightarrow \sqrt x = 3 \Leftrightarrow x = 9\\
e)E = \dfrac{{x + 6\sqrt x + 34}}{{\sqrt x + 3}}\\
= \dfrac{{x + 6\sqrt x + 9 + 25}}{{\sqrt x + 3}}\\
= \dfrac{{{{\left( {\sqrt x + 3} \right)}^2} + 25}}{{\sqrt x + 3}}\\
= \sqrt x + 3 + \dfrac{{25}}{{\sqrt x + 3}}\\
\ge 2\sqrt {\left( {\sqrt x + 3} \right).\dfrac{{25}}{{\sqrt x + 3}}} = 10\\
\Leftrightarrow E \ge 10\\
\Leftrightarrow GTNN:E = 10\,khi:\sqrt x + 3 = 5 \Leftrightarrow x = 4
\end{array}$