Đáp án:
`B={\sqrt[x]-1}/{\sqrt[x]-3}`
Giải thích các bước giải:
`ĐKXĐ:x≥0;x\ne4,x\ne9`
`B= {2\sqrt[x]-9}/{x-5\sqrt[x]+6}+{2\sqrt[x]+1}/{\sqrt[x]-3}-{\sqrt[x]+3}/{\sqrt[x]-2}`
`B={2\sqrt[x]-9+(2\sqrt[x]+1)(\sqrt[x]-2)-(\sqrt[x]+3)(\sqrt[x]-3)}/{(\sqrt[x]-2)(\sqrt[x]-3)}`
`B={2\sqrt[x]-9+2x-4\sqrt[x]-\sqrt[x]+2-x+9}/{(\sqrt[x]-2)(\sqrt[x]-3)}`
`B={x-3\sqrt[x]+2}/{(\sqrt[x]-2)(\sqrt[x]-3)}`
`B={(\sqrt[x]-1)(\sqrt[x]-2)}/{(\sqrt[x]-2)(\sqrt[x]-3)}`
`B={\sqrt[x]-1}/{\sqrt[x]-3}`