Đáp án: GTNN của P = 19/16 khi x = (3√2)/4 ; y = 1/4
Giải thích các bước giải: Điều kiện 5 - 2y ≥ 0 ⇔ y ≤ 5/2
(4x² + 1)x + (y - 3)√(5 - 2y) = 0
⇔ 2x(4x² + 1) + (2y - 6)√(5 - 2y) = 0
⇔ 2x(4x² + 1) = (5 - 2y + 1)√(5 - 2y)
⇔ 2x(4x² + 1) = √(5 - 2y).[√(5 - 2y)² + 1] (1)
Xét hàm f(t) = t(t² + 1) = t³ + t liên tục với mọi t∈R
⇒ f'(t) = 3t² + 1 > 0 ⇒ f(t) là hàm số tăng với mọi t∈R
⇒ f(t1) = f(t2) ⇔ t1 = t2 (2)
Với t1 = 2x; t2 = √(5 - 2y) thì từ (1) và (2) suy ra :
2x = √(5 - 2y) ⇔ 4x² = 5 - 2y (x ≥ 0)
Ta có :
4P = 4x² + 4y² = 5 - 2y + 4y² = 19/4 + (1/2)² - 2(1/2)(2y) + 4y² = 19/4 + (1/2 - 2y)² ≥ 19/4
⇒ GTNN của P = 19/16 ⇔ 1/2 - 2y = 0 ⇔ y = 1/4 ⇒ 4x² = 5 - 1/2 = 9/2 ⇒ x = (3√2)/4 (thỏa)