Đáp án:
$\begin{array}{l}
n){25^6}{.125^3}\\
= {\left( {{5^2}} \right)^6}.{\left( {{5^3}} \right)^3}\\
= {5^{12}}{.5^9}\\
= {5^{21}}\\
o){12^3}:{3^3} = {\left( {{2^2}.3} \right)^3}:{3^3}\\
= {2^6}{.3^3}:{3^3}\\
= {2^6}\\
p){10^7}:{5^7}:{2^5}\\
= {\left( {2.5} \right)^7}:{5^7}:{2^5}\\
= {2^7}:{2^5}\\
= {2^2}\\
r){17^2} - {15^2}\\
= {17^2} - {\left( {17 - 2} \right)^2}\\
= {17^2} - {17^2} + 4.17 - {2^2}\\
= 4.\left( {17 - 1} \right)\\
= 4.16\\
= {2^6}\\
s){13^2} - {12^2}\\
= \left( {13 - 12} \right)\left( {13 + 12} \right)\\
= 1.25\\
= {5^2}\\
t){3^2} + {4^2} = 25 = {5^2}\\
u){2^3} - {2^3} + {5^2} = {5^2}\\
v){1^3} + {2^3} + {3^4} + {4^3}\\
= 1 + 8 + 81 + 64\\
= 154
\end{array}$