Đáp án:
$\begin{array}{l}
7)a)\\
Dkxd:a \ge 0;a \ne 1\\
P = \left( {\dfrac{{1 - a\sqrt a }}{{1 - \sqrt a }} + \sqrt a } \right)\left( {\dfrac{{1 + a\sqrt a }}{{1 + \sqrt a }} - \sqrt a } \right)\\
= \left[ {\dfrac{{\left( {1 - \sqrt a } \right)\left( {1 + \sqrt a + a} \right)}}{{1 - \sqrt a }} + \sqrt a } \right].\\
\left[ {\dfrac{{\left( {1 + \sqrt a } \right)\left( {1 - \sqrt a + a} \right)}}{{1 + \sqrt a }} - \sqrt a } \right]\\
= \left( {1 + \sqrt a + a + \sqrt a } \right)\left( {1 - \sqrt a + a - \sqrt a } \right)\\
= {\left( {\sqrt a + 1} \right)^2}.{\left( {\sqrt a - 1} \right)^2}\\
= {\left( {a - 1} \right)^2}\\
b)P < 7 - 4\sqrt 3 \\
\Rightarrow {\left( {a - 1} \right)^2} < 7 - 4\sqrt 3 \\
\Rightarrow {\left( {a - 1} \right)^2} < {\left( {2 - \sqrt 3 } \right)^2}\\
\Rightarrow - 2 + \sqrt 3 < a - 1 < 2 - \sqrt 3 \\
\Rightarrow \sqrt 3 - 1 < a < 3 - \sqrt 3 ;a \ne 1\\
8)\\
a)Dkxd:x \ge 0;x \ne 9\\
P = \left( {\dfrac{{2\sqrt x }}{{\sqrt x + 3}} + \dfrac{{\sqrt x }}{{\sqrt x - 3}} - \dfrac{{3x + 3}}{{x - 9}}} \right):\left( {\dfrac{{2\sqrt x - 2}}{{\sqrt x - 3}} - 1} \right)\\
= \dfrac{{2\sqrt x \left( {\sqrt x - 3} \right) + \sqrt x \left( {\sqrt x + 3} \right) - 3x - 3}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}:\\
\dfrac{{2\sqrt x - 2 - \sqrt x + 3}}{{\sqrt x - 3}}\\
= \dfrac{{2x - 6\sqrt x + x + 3\sqrt x - 3x - 3}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}.\dfrac{{\sqrt x - 3}}{{\sqrt x + 1}}\\
= \dfrac{{ - 3\sqrt x - 3}}{{\sqrt x + 3}}.\dfrac{1}{{\sqrt x + 1}}\\
= \dfrac{{ - 3}}{{\sqrt x + 3}}\\
b)P < \dfrac{1}{2}\\
\Rightarrow \dfrac{{ - 3}}{{\sqrt x + 3}} < \dfrac{1}{2}\\
\Rightarrow \dfrac{{ - 3.2 - \sqrt x - 3}}{{2\left( {\sqrt x + 3} \right)}} < 0\\
\Rightarrow - 6 - \sqrt x - 3 < 0\\
\Rightarrow \sqrt x > - 9\left( {luon\,dung} \right)\\
Vay\,x \ge 0;x \ne 9\,thi:P < \dfrac{1}{2}\\
c)P = \dfrac{{ - 3}}{{\sqrt x + 3}}\\
Do:\sqrt x + 3 \ge 3\\
\Rightarrow \dfrac{1}{{\sqrt x + 3}} \le \dfrac{1}{3}\\
\Rightarrow - \dfrac{3}{{\sqrt x + 3}} \ge - 1\\
\Rightarrow P \ge - 1\\
\Rightarrow GTNN:P = - 1\,khi:x = 0
\end{array}$