Đáp án:
Giải thích các bước giải:
`((2x+1)/(\sqrt{x^3}-1}-\sqrt{x}/(x+\sqrt{x}+1})((1+\sqrt{x^3})/(1+\sqrt{x}) -\sqrt{x})`
`=((2x+1)/((\sqrt{x}-1)(x+\sqrt{x}+1))-(\sqrt{x}(\sqrt{x}-1))/((\sqrt{x}-1)(x+\sqrt{x}+1)))((1+\sqrt{x^3}-\sqrt{x}(1+\sqrt{x}))/(1+\sqrt{x}))`
`=(x+\sqrt{x}+1)/((\sqrt{x}-1)(x+\sqrt{x}+1) ) .((1+\sqrt{x^3}-\sqrt{x}-\sqrt{x^2})/(1+\sqrt{x}))`
`=1/(\sqrt{x}-1) .((\sqrt{x}-1)(\sqrt{x^2}-1))/(1+\sqrt{x})`
`=1/(\sqrt{x}-1) .((\sqrt{x}-1)(\sqrt{x}-1)(\sqrt{x}+1))/(1+\sqrt{x})`
`=\sqrt{x}-1`