Đáp án:
Giải thích các bước giải:
1)sinx= trừ 1
⇔sinx=sin trừ π/2
⇔x=trừ π/2 +k2π
2) sin(x+π/6)=1
⇔sin(x+π/6)= sinπ/2
⇔ x+π/6= π/2 + k2π
x+π/6=π trừ π/2 + k2π
⇔x=π/3 + k2π
3)sin2x= sinx
⇔2sinxcosx=sinx
⇔2cosx=1
⇔cosx=1/2
⇔x=±π/3 +k2π
4) cosx= trừ 1/2
⇔cosx=cos2π/3
⇔x=±2π/3 +k2π
5) cosx=√3/2
⇔cosx=cosπ/6
⇔x=±π/6 +k2π
6) cosx=1
⇔x=k2π
7)tan3x=tanx
⇔tan2x=1
⇔tan2x=tanπ/4
⇔2x=π/4 +kπ
⇔x=π/8+kπ/2
8) tan(x+π/3)=0
⇔x+π/3=kπ
⇔x=kπ trừ π/3
9) tan( 3x +30độ)= trừ √3/3
⇔tan(3x+π/6)= tan trừ π/6
⇔3x +π/6= trừ π/6 + kπ
⇔x= trừ π/9 + kπ/3
10) 2cotx trừ √3 =0
⇔cotx=√3/2
⇔x=arccot(√3/2) +kπ