Đáp án:
Giải thích các bước giải:
Bài `3:`
`a)(2x+1)(x-1)=0`
`↔` \(\left[ \begin{array}{l}2x+1=0\\x-1=0\end{array} \right.\)
`↔` \(\left[ \begin{array}{l}x=-\dfrac{1}{2}\\x=1\end{array} \right.\)
Vậy `S={-1/2;1}`
`b)(x+2/3)(x-1/2)=0`
`↔` \(\left[ \begin{array}{l}x+\dfrac{2}{3}=0\\x-\dfrac{1}{2}=0\end{array} \right.\)
`↔` \(\left[ \begin{array}{l}x=-\dfrac{2}{3}\\x=\dfrac{1}{2}\end{array} \right.\)
Vậy `S={-2/3;1/2}`
`c)(3x-1)(2x-3)(x+5)=0`
`↔` \(\left[ \begin{array}{l}3x-1=0\\2x-3=0\\x+5=0\end{array} \right.\)
`↔` \(\left[ \begin{array}{l}x=\dfrac{1}{3}\\x=\dfrac{3}{2}\\x=-5\end{array} \right.\)
Vậy `S={1/3;3/2;-5}`
`d)3x-15=2x(x-5)`
`↔3(x-5)=2x(x-5)`
`↔3(x-5)-2x(x-5)=0`
`↔(3-2x)(x-5)=0`
`↔` \(\left[ \begin{array}{l}3-2x=0\\x-5=0\end{array} \right.\)
`↔` \(\left[ \begin{array}{l}x=\dfrac{3}{2}\\x=5\end{array} \right.\)
Vậy `S={3/2;5}`
`e)x^2-x=0`
`↔x(x-1)=0`
`↔` \(\left[ \begin{array}{l}x=0\\x-1=0↔x=1\end{array} \right.\)
Vậy `S={0;1}`
`f)x^2-2x=0`
`↔x(x-2)=0`
`↔` \(\left[ \begin{array}{l}x=0\\x-2=0↔x=2\end{array} \right.\)
Vậy `S={0;2}`
`g)x^2-3x=0`
`↔x(x-3)=0`
`↔` \(\left[ \begin{array}{l}x=0\\x-3=0↔x=3\end{array} \right.\)
Vậy `S={0;3}`
`h)(x+1)(x+2)=(2-x)(x+2)`
`↔(x+1)(x+2)-(2-x)(x+2)=0`
`↔(x+2)(x+1-2+x)=0`
`↔(x+2)(2x-1)=0`
`↔` \(\left[ \begin{array}{l}x+2=0\\2x-1=0\end{array} \right.\)
`↔` \(\left[ \begin{array}{l}x=-2\\x=\dfrac{1}{2}\end{array} \right.\)
Vậy `S={-2;1/2}`