1,
`5x^2-3x=0`
`<=>x(5x-3)=0`
`<=>`\(\left[ \begin{array}{l}x=0\\5x-3=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=0\\x= \frac{3}{5}\end{array} \right.\)
Vậy: `S={0;3/5}`
2,
`3x(x-1)+(x-1)=0`
`<=>(3x+1)(x-1)=0`
`<=>`\(\left[ \begin{array}{l}3x+1=0\\x-1=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=-\frac{1}{3}\\x=1\end{array} \right.\)
Vậy: `S={-1/3;1}`
3,
`(2x-1)^2-25=0`
`<=>(2x-1-5)(2x-1+5)=0`
`<=>(2x-6)(2x+4)=0`
`<=>`\(\left[ \begin{array}{l}2x-6=0\\2x+4=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=3\\x=-2\end{array} \right.\)
Vậy: `S={3;-2}`
4,
`3x^2-7x-6=0`
`<=>3x^2+2x-9x-6=0`
`<=>x(3x+2)-3(3x+2)=0`
`<=>(x-3)(3x+2)=0`
`<=>`\(\left[ \begin{array}{l}x-3=0\\3x+2=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=3\\x=-\frac{2}{3}\end{array} \right.\)
Vậy: `S={3;-2/3}`