Đáp án:
$\displaystyle \begin{array}{{>{\displaystyle}l}} 1.\ 2\\ 2.\ 3\\ 4.15 \end{array}$
Giải thích các bước giải:
$\displaystyle \begin{array}{{>{\displaystyle}l}} 1.\frac{16^{9} .32^{12}}{8^{25} .4^{10}} =\frac{\left( 2^{4}\right)^{9}\left( 2^{5}\right)^{12}}{\left( 2^{3}\right)^{25}\left( 2^{2}\right)^{10}} =\frac{2^{36} .2^{60}}{2^{75} .2^{20}} =\frac{2^{96}}{2^{95}} =2\\ 2.\frac{3^{17} .\left( 3^{4}\right)^{11}}{\left( 3^{3}\right)^{10}\left( 3^{2}\right)^{15}} =\frac{3^{17} .3^{44}}{3^{30} .\ 3^{30}} =\frac{3^{61}}{3^{60}} =3\\ 3.\frac{27^{3} .25^{5}}{125^{3} .81^{2}} =\frac{\left( 3^{3}\right)^{3}\left( 5^{2}\right)^{5}}{\left( 5^{3}\right)^{3}\left( 3^{4}\right)^{2}} =\frac{3^{9} .5^{10}}{5^{9} .3^{8}} =3.5=15 \end{array}$