`(x+1)^2006 + (y - 1)^2008 = 0`
$\text{Ta có:}$
`(x+1)^2006 \ge0 ∀ x`
`(y-1)^2006 \ge 0 ∀y`
` mà ` `(x+1)^2006+(y-1)^2008=0`
`=>(x+1)^2006=(y-1)^2008=0`
$⇒ \left \{ {{x +1=0} \atop {y-1=0}} \right.$
$⇒ \left \{ {{x=-1} \atop {y=2}} \right.$
$\text{Thay x = -1; y = 1 vào Q, ta được:}$
`Q = 5 . (-1)^10 + 1^15 + 2016 = 5 . 1 + 1 + 2016 = 2022`
$\text{Vậy Q = 2022}$