Đáp án:
E=(√x+1)/(x+2√x+1)-(√x-1)/(x-1)+1/2 F=((√x-1)/(√x+1)-(√x+1)/(√x-1))×((1/2√x)+(-√x/2))²
= (√x+1)/(√x+1)²-(√x-1)/(x-1)+1/2 =((√x-1)²-(√x+1)²)/(x-1)×((1-x)/(2√x))²
=1/(√x+1)-(√x-1)/(x-1)+1/2 =(-4√x)/(x-1)×((1-x)/(2√x))²
= (2.(√x-1)-(2.(√x-1)+(x-1))/2.(x-1) =ω
= (2.√x-2-2.√x+2+x-1)/2(x-1)
= (x-1)/2(x-1)
=1/2
G=(2+(a+3√a)/(√a+3)).(2-(a-3√a)/(√a-3))
=(2√a+6+a+3√a)/(√a+3).(2√a-6-a+3√a)/(√a-3)
=(6+a+5√a)/(√a+3).(5√a-6-a)/(√a-3)
=((6+a+5√a).(5√a-6-a))/(a-9)
=(25a-30√a-5a√a+30√a-36-6a+5a√a-6a-a²)/(a-9)
=(-a²+13a-36)/(a-9)
=ωω