Đáp án:
\(\begin{array}{l}
B1:\\
a)P = \dfrac{{\sqrt a - 4}}{{\sqrt a - 2}}\\
B2:\\
a)P = \dfrac{{\sqrt x - 2}}{{\sqrt x + 1}}\\
B3:\\
a)P = \dfrac{{x + \sqrt x }}{{3\sqrt x - 1}}\\
B4:\\
a)P = \dfrac{{a + 1 + \sqrt a }}{{\sqrt a - 1}}
\end{array}\)
Giải thích các bước giải:
\(\begin{array}{l}
B1:\\
a)P = \dfrac{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 2} \right) - 5 - \sqrt a - 3}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a + 3} \right)}}\\
= \dfrac{{a - 4 - 8 - \sqrt a }}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a + 3} \right)}}\\
= \dfrac{{a - \sqrt a - 12}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a + 3} \right)}}\\
= \dfrac{{\left( {\sqrt a - 4} \right)\left( {\sqrt a + 3} \right)}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a + 3} \right)}}\\
= \dfrac{{\sqrt a - 4}}{{\sqrt a - 2}}\\
B2:\\
a)P = \dfrac{{\sqrt x + 1 - \sqrt x }}{{\sqrt x + 1}}:\dfrac{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right) - \left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right) + \sqrt x + 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{1}{{\sqrt x + 1}}.\dfrac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}{{x - 9 - x + 4 + \sqrt x + 2}}\\
= \dfrac{1}{{\sqrt x + 1}}.\dfrac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}{{\sqrt x - 3}}\\
= \dfrac{{\sqrt x - 2}}{{\sqrt x + 1}}\\
B3:\\
a)P = \dfrac{{\left( {\sqrt x - 1} \right)\left( {3\sqrt x + 1} \right) - 3\sqrt x + 1 + 8\sqrt x }}{{\left( {3\sqrt x + 1} \right)\left( {3\sqrt x - 1} \right)}}:\dfrac{{3\sqrt x + 1 - 3\sqrt x + 2}}{{3\sqrt x + 1}}\\
= \dfrac{{3x - 2\sqrt x - 1 + 5\sqrt x + 1}}{{\left( {3\sqrt x + 1} \right)\left( {3\sqrt x - 1} \right)}}.\dfrac{{3\sqrt x + 1}}{3}\\
= \dfrac{{3x + 3\sqrt x }}{{\left( {3\sqrt x + 1} \right)\left( {3\sqrt x - 1} \right)}}.\dfrac{{3\sqrt x + 1}}{3}\\
= \dfrac{{x + \sqrt x }}{{3\sqrt x - 1}}\\
B4:\\
a)P = \dfrac{{a + 1 + \sqrt a }}{{a + 1}}:\left[ {\dfrac{1}{{\sqrt a - 1}} - \dfrac{{2\sqrt a }}{{a\left( {\sqrt a - 1} \right) + \left( {\sqrt a - 1} \right)}}} \right]\\
= \dfrac{{a + 1 + \sqrt a }}{{a + 1}}:\left[ {\dfrac{{a + 1 - 2\sqrt a }}{{\left( {\sqrt a - 1} \right)\left( {a + 1} \right)}}} \right]\\
= \dfrac{{a + 1 + \sqrt a }}{{a + 1}}:\dfrac{{{{\left( {\sqrt a - 1} \right)}^2}}}{{\left( {\sqrt a - 1} \right)\left( {a + 1} \right)}}\\
= \dfrac{{a + 1 + \sqrt a }}{{a + 1}}.\dfrac{{\left( {\sqrt a - 1} \right)\left( {a + 1} \right)}}{{{{\left( {\sqrt a - 1} \right)}^2}}}\\
= \dfrac{{a + 1 + \sqrt a }}{{\sqrt a - 1}}
\end{array}\)