Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
P = \dfrac{{x + 2}}{{x\sqrt x - 1}} + \dfrac{{\sqrt x + 1}}{{x + \sqrt x + 1}} - \dfrac{{\sqrt x + 1}}{{x - 1}}\\
= \dfrac{{x + 2}}{{{{\sqrt x }^3} - {1^3}}} + \dfrac{{\sqrt x + 1}}{{x + \sqrt x + 1}} - \dfrac{{\sqrt x + 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\
= \dfrac{{x + 2}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}} + \dfrac{{\sqrt x + 1}}{{x + \sqrt x + 1}} - \dfrac{1}{{\sqrt x - 1}}\\
= \dfrac{{\left( {x + 2} \right) + \left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right) - 1.\left( {x + \sqrt x + 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\\
= \dfrac{{x + 2 + x - 1 - x - \sqrt x - 1}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\\
= \dfrac{{x - \sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\\
= \dfrac{{\sqrt x \left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}\\
= \dfrac{{\sqrt x }}{{x + \sqrt x + 1}}\\
b,\\
P - \dfrac{1}{3} = \dfrac{{\sqrt x }}{{x + \sqrt x + 1}} - \dfrac{1}{3}\\
= \dfrac{{3\sqrt x - \left( {x + \sqrt x + 1} \right)}}{{3.\left( {x + \sqrt x + 1} \right)}}\\
= \dfrac{{ - x + 2\sqrt x - 1}}{{3.\left( {x + \sqrt x + 1} \right)}}\\
= \dfrac{{ - \left( {x - 2\sqrt x + 1} \right)}}{{3.\left( {x + \sqrt x + 1} \right)}}\\
= \dfrac{{ - {{\left( {\sqrt x - 1} \right)}^2}}}{{3.\left( {x + \sqrt x + 1} \right)}} < 0,\,\,\,\forall x > 0,x \ne 1\\
\Rightarrow P < \dfrac{1}{3},\,\,\,\,\forall x > 0,x \ne 1
\end{array}\)