`#huy`
`1)`
`x/1=y/8=>x/6=y/48`
`y/6=z/3=>y/48=z/24`
`=>x/6=y/48=z/24`
Áp dụng dãy tỉ sô bằng nhau
`x/6=y/48=z/24=(x+y-z)/(6+48-24)=30/30=1`
`x/6=1<=>x=6`
`y/48=1<=>y=48`
`z/24=1<=>z=24`
Vậy `(x;y;z)=(6;48;24)`
`2)`
`x/2=y/3=>x/8=y/12`
`y/4=z/5=>y/12=z/15`
`=>x/8=y/12=z/15`
Áp dụng dảy tỉ sô bằng nhau
`x/8=y/12=z/15=(x+y-z)/(8+12-15)=10/5=2`
`x/8=2<=>x=16`
`y/12=2<=>y=24`
`z/15=2<=>z=30`
Vậy `(x;y;z)=(16;24;30)`