Đáp án:
d) \(x < \dfrac{1}{6}\)
Giải thích các bước giải:
\(\begin{array}{l}
a)5x - 2 > 3\\
\to 5x > 5\\
\to x > 1\\
c)DK:x \ne - \dfrac{1}{3}\\
\dfrac{{3\left( {x - 2} \right) - 3x - 1}}{{3\left( {3x + 1} \right)}} \ge 0\\
\to \dfrac{{3x - 6 - 3x - 1}}{{3\left( {3x + 1} \right)}} \ge 0\\
\to \dfrac{{ - 7}}{{3\left( {3x + 1} \right)}} \ge 0\\
\to 3x + 1 < 0\\
\to x < - \dfrac{1}{3}\\
b)1 - 3x \le - 2\\
\to 3 \le 3x\\
\to x \ge 1\\
d)DK:x \ne \dfrac{1}{6}\\
\dfrac{{3\left( {2x + 1} \right) - 6x + 1}}{{3\left( {6x - 1} \right)}} \le 0\\
\to \dfrac{{6x + 3 - 6x + 1}}{{3\left( {6x - 1} \right)}} \le 0\\
\to \dfrac{4}{{3\left( {6x - 1} \right)}} \le 0\\
\to 6x - 1 < 0\\
\to x < \dfrac{1}{6}
\end{array}\)