Đáp án:
\(\begin{array}{l}
B1:\\
a)\dfrac{{\sqrt x + 2}}{{\sqrt x + 1}}\\
b)x \in \emptyset \\
B2)\\
a)\dfrac{{\sqrt x + 1}}{{\sqrt x - 1}}\\
b)\dfrac{{3 + 2\sqrt 3 }}{3}\\
c)x = 4\\
d)x > 1\\
e)\left[ \begin{array}{l}
x = 9\\
x = 4\\
x = 0
\end{array} \right.
\end{array}\)
Giải thích các bước giải:
\(\begin{array}{l}
B1:\\
a)DK:x \ge 0;x \ne 4\\
A = \dfrac{{\sqrt x + \sqrt x + 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}} = \dfrac{{2\sqrt x + 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\\
P = B:A = \dfrac{2}{{\sqrt x - 2}}:\dfrac{{2\sqrt x + 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\\
= \dfrac{2}{{\sqrt x - 2}}.\dfrac{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}{{2\sqrt x + 2}}\\
= \dfrac{{\sqrt x + 2}}{{\sqrt x + 1}}\\
b)P = \dfrac{4}{3}\\
\to \dfrac{{\sqrt x + 2}}{{\sqrt x + 1}} = \dfrac{4}{3}\\
\to 3\sqrt x + 6 = 4\sqrt x + 4\\
\to \sqrt x = 2\\
\to x = 4\left( {KTM} \right)\\
\to x \in \emptyset \\
B2:\\
a)DK:x \ge 0;x \ne 1\\
Q = \dfrac{{3x + 3\sqrt x - 3 - \left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right) - \left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{3x + 3\sqrt x - 3 - x + 1 - x + 4}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{x + 3\sqrt x + 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{\sqrt x + 1}}{{\sqrt x - 1}}\\
b)Thay:x = 4 + 2\sqrt 3 \\
= 3 + 2\sqrt 3 .1 + 1\\
= {\left( {\sqrt 3 + 1} \right)^2}\\
\to Q = \dfrac{{\sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} + 1}}{{\sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} - 1}}\\
= \dfrac{{\sqrt 3 + 1 + 1}}{{\sqrt 3 + 1 - 1}} = \dfrac{{\sqrt 3 + 2}}{{\sqrt 3 }} = \dfrac{{3 + 2\sqrt 3 }}{3}\\
c)Q = 3\\
\to \dfrac{{\sqrt x + 1}}{{\sqrt x - 1}} = 3\\
\to \sqrt x + 1 = 3\sqrt x - 3\\
\to 2\sqrt x = 4\\
\to \sqrt x = 2\\
\to x = 4\\
d)Q > \dfrac{1}{2}\\
\to \dfrac{{\sqrt x + 1}}{{\sqrt x - 1}} > \dfrac{1}{2}\\
\to \dfrac{{2\sqrt x + 2 - \sqrt x + 1}}{{2\left( {\sqrt x - 1} \right)}} > 0\\
\to \dfrac{{\sqrt x + 3}}{{2\left( {\sqrt x - 1} \right)}} > 0\\
\to \sqrt x - 1 > 0\left( {do:\sqrt x + 3 > 0\forall x \ge 0} \right)\\
\to x > 1\\
e)Q = \dfrac{{\sqrt x + 1}}{{\sqrt x - 1}} = \dfrac{{\sqrt x - 1 + 2}}{{\sqrt x - 1}}\\
= 1 + \dfrac{2}{{\sqrt x - 1}}\\
Q \in Z \to \dfrac{2}{{\sqrt x - 1}} \in Z\\
\to \sqrt x - 1 \in U\left( 2 \right)\\
\to \left[ \begin{array}{l}
\sqrt x - 1 = 2\\
\sqrt x - 1 = 1\\
\sqrt x - 1 = - 1
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 9\\
x = 4\\
x = 0
\end{array} \right.
\end{array}\)