Giải thích các bước giải:
`3sqrt(x+1)+2sqrt(x−2)=6+sqrt(x^2−x−2)`
`⇒6+sqrt(x^2−x−2)−3sqrt(x+1)−2sqrt(x−2)=0`
`⇒6+sqrt((x+1)(x−2))−3sqrt(x+1)−2sqrt(x−2)=0`
`⇒(sqrt((x+1)(x−2))−2sqrt(x−2))−(3sqrt(x+1)−6)=0`
`⇒sqrt(x−2)(sqrt(x+1)−2)−3(sqrt(x+1)−2)=0`
`⇒(sqrt(x+1)−2)(sqrt(x−2)−3)=0`
`=>`\(\left[ \begin{array}{l}\sqrt{x+1}=2\\\sqrt{x-2}=3\end{array} \right.\) `=>`\(\left[ \begin{array}{l}x=3\\x=11\end{array} \right.\)