Giải thích các bước giải:
$\frac{(\sqrt[4]{3}+\sqrt[4]{5})(3\sqrt[4]{3}-3\sqrt[4]{5}+\sqrt[4]{675}}{\sqrt{27}+\sqrt[4]{3375}}\\
=\frac{(3^{\frac{1}{4}}+5^{\frac{1}{4}})(3^{\frac{5}{4}}-3.5^{\frac{1}{4}}+3^{\frac{3}{4}}.5^{\frac{1}{2}})}{3^{\frac{3}{2}}+3^{\frac{3}{4}}.5^{\frac{3}{4}}}\\
=\frac{(3^{\frac{1}{4}}+5^{\frac{1}{4}})(3^{\frac{5}{4}}-3.5^{\frac{1}{4}}+3^{\frac{3}{4}}.5^{\frac{1}{2}})}{3^{\frac{3}{4}}(3^{\frac{3}{4}}+5^{\frac{3}{4}})}\\
=\frac{3^{\frac{3}{4}}(3^{\frac{1}{4}}+5^{\frac{1}{4}})(3^{\frac{1}{2}}-3^{\frac{1}{4}}.5^{\frac{1}{4}}+5^{\frac{1}{2}})}{3^{\frac{3}{4}}(3^{\frac{3}{4}}+5^{\frac{3}{4}})}=1$