Đáp án:
$B$
Giải thích các bước giải:
Ta có:
Hàm số $f\left( x \right) = \dfrac{1}{3}{x^3} - m{x^2} + \left( {m + 6} \right)x + \dfrac{2}{3}$
Để hàm số đồng biến trên $(0;+\infty)$
$\begin{array}{l}
\Leftrightarrow f'\left( x \right) \ge 0,\forall x \in \left( {0; + \infty } \right)\\
\Leftrightarrow {x^2} - 2mx + m + 6 \ge 0,\forall x \in \left( {0; + \infty } \right)\\
\Leftrightarrow {x^2} + 6 \ge m\left( {2x - 1} \right)\left( 1 \right),\forall x \in \left( {0; + \infty } \right)
\end{array}$
+) TH1: $2x - 1 > 0 \Leftrightarrow x > \dfrac{1}{2}$
Khi đó:
$\begin{array}{l}
\left( 1 \right) \Leftrightarrow m \le \dfrac{{{x^2} + 6}}{{2x - 1}},\forall x \in \left( {\dfrac{1}{2}; + \infty } \right)\\
\Leftrightarrow m \le \mathop {\min }\limits_{x \in \left( {\dfrac{1}{2}; + \infty } \right)} \left( {\dfrac{{{x^2} + 6}}{{2x - 1}}} \right)
\end{array}$
+) TH2: $2x - 1 < 0 \Leftrightarrow x < \dfrac{1}{2}$
Khi đó:
$\begin{array}{l}
\left( 1 \right) \Leftrightarrow m \ge \dfrac{{{x^2} + 6}}{{2x - 1}},\forall x \in \left( {0;\dfrac{1}{2}} \right)\\
\Leftrightarrow m \ge \mathop {\max }\limits_{x \in \left( {0;\dfrac{1}{2}} \right)} \left( {\dfrac{{{x^2} + 6}}{{2x - 1}}} \right)
\end{array}$
Ta xét hàm $g\left( x \right) = \dfrac{{{x^2} + 6}}{{2x - 1}},x \in \left( {0; + \infty } \right)\backslash \left\{ {\dfrac{1}{2}} \right\}$
Có:
$\begin{array}{l}
g'\left( x \right) = \dfrac{{2x\left( {2x - 1} \right) - \left( {{x^2} + 6} \right).2}}{{{{\left( {2x - 1} \right)}^2}}}\\
= \dfrac{{2\left( {{x^2} - x - 6} \right)}}{{{{\left( {2x - 1} \right)}^2}}} = \dfrac{{2\left( {x - 3} \right)\left( {x + 2} \right)}}{{{{\left( {2x - 1} \right)}^2}}}
\end{array}$
BBT hàm $g(x)$ trên $\left( {0; + \infty } \right)\backslash \left\{ {\dfrac{1}{2}} \right\}$
Từ BBT ta có:
Để $(1)$ đúng
$\begin{array}{l}
\Leftrightarrow \left\{ \begin{array}{l}
m \le \mathop {\min }\limits_{x \in \left( {\dfrac{1}{2}; + \infty } \right)} g\left( x \right)\\
m \ge \mathop {\max }\limits_{x \in \left( {0;\dfrac{1}{2}} \right)} g\left( x \right)
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m \le 3\\
m \ge - 6
\end{array} \right.\\
\Leftrightarrow - 6 \le m \le 3
\end{array}$
Mà $m\in Z$ nên $m \in \left\{ { - 6; - 5; - 4;...;1;2;3} \right\}$
$\to $ Có $10$ giá trị của $m$ thỏa mãn