\[\begin{array}{l}
9)\,\,y = \frac{1}{2}\sin x + \frac{{\sqrt 3 }}{2}\cos x = \sin \left( {x + \frac{\pi }{3}} \right)\\
Ta\,\,co:\,\, - 1 \le \sin \left( {x + \frac{\pi }{3}} \right) \le 1\\
\Rightarrow Min\,\,y = - 1 \Leftrightarrow \sin \left( {x + \frac{\pi }{3}} \right) = - 1\\
Maxy = 1 \Leftrightarrow \sin \left( {x + \frac{\pi }{3}} \right) = 1.\\
12)\,\,y = \sqrt {\frac{1}{2} - \sin x} \\
Ta\,\,co:\,\,\, - 1 \le \sin x \le 1\\
\Rightarrow - 1 \le - \sin x \le 1\\
\Leftrightarrow - \frac{1}{2} \le \frac{1}{2} - \sin x \le \frac{3}{2}\\
\Rightarrow 0 \le \sqrt {\frac{1}{2} - \sin x} \le \frac{{\sqrt 6 }}{2}\\
\Rightarrow Min\,y = 0 \Leftrightarrow \sin x = \frac{1}{2}\\
Maxy = \frac{{\sqrt 6 }}{3} \Leftrightarrow \sin x = - 1.
\end{array}\]