Đáp án:
\(x = \frac{\pi }{2}\)
Giải thích các bước giải:
\[\begin{array}{l}
\sin 2x + 4\left( {\cos x - \sin x} \right) = 4\,\,\,\left( * \right)\\
Dat\,\,\,t = \cos x - \sin x\,\,\,\left( { - \sqrt 2 \le t \le \sqrt 2 } \right)\\
\Rightarrow {t^2} = 1 - 2\sin x\cos x = 1 - \sin 2x\\
\Rightarrow \sin 2x = 1 - {t^2}\\
\Rightarrow \left( * \right) \Leftrightarrow 1 - {t^2} + 4t = 4\\
\Leftrightarrow {t^2} - 4t + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}
t = 1\,\,\,\left( {tm} \right)\\
t = 3\,\,\,\left( {ktm} \right)
\end{array} \right.\\
\Leftrightarrow \cos x - \sin x = 1\\
\Leftrightarrow \sqrt 2 \cos \left( {x - \frac{\pi }{4}} \right) = 1\\
\Leftrightarrow \cos \left( {x - \frac{\pi }{4}} \right) = \frac{1}{{\sqrt 2 }}\\
\Leftrightarrow \left[ \begin{array}{l}
x - \frac{\pi }{4} = \frac{\pi }{4} + k2\pi \\
x - \frac{\pi }{4} = - \frac{\pi }{4} + m2\pi
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{2} + k2\pi \\
x = m2\pi
\end{array} \right.\,\,\,\left( {k,\,\,m \in Z} \right).\\
x \in \left( {0;\,\,2\pi } \right) \Rightarrow \left[ \begin{array}{l}
0 < \frac{\pi }{2} + k2\pi < 2\pi \\
0 < m2\pi < 2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
- \frac{\pi }{2} < k2\pi < \frac{{3\pi }}{2}\\
0 < m < 1
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
- \frac{1}{4} < k < \frac{3}{4}\\
m \in \emptyset
\end{array} \right.\\
\Leftrightarrow k = 0\\
\Rightarrow x = \frac{\pi }{2}.
\end{array}\]