g)
`x^2-4x=0`
`<=>x(x-4)=0`
`<=>` \(\left[ \begin{array}{l}x=0\\x-4=0\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}x=0\\x=4\end{array} \right.\)
vậy `S={0;-4}`
h)
`(1-x)^2-1+x=0`
`<=> (1-x)^2-(1-x)=0`
`<=>(1-x-1)(1-x)=0`
`<=>-x(1-x)=0`
`<=>`\(\left[ \begin{array}{l}x=0\\1-x=0\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}x=0\\x=1\end{array} \right.\)
vậy `S={0;1}`
i)
`x+6x^2=0`
`<=>x(1+6x)=0`
`<=>` \(\left[ \begin{array}{l}x=0\\1+6x=0\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}x=0\\6x=-1\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}x=0\\x=\dfrac{-1}{6}\end{array} \right.\)
vậy `S={0;-1/6}`
k)
`(x+1)=(x+1)^2`
`<=>(x+1)-(x+1)^2=0`
`<=>(x+1)(x+1-1)=0`
`<=>(x+1)x=0`
`<=>` \(\left[ \begin{array}{l}x=0\\x+1=0\end{array} \right.\) `<=>` \(\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.\)
vậy `S={0;-1}`