Đáp án:
\(\left[ \begin{array}{l}
x = 0\\
x = - 1
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
{(2x + 1)^4} = {(2x + 1)^{2018}}\\
\to \dfrac{{{{(2x + 1)}^{2018}}}}{{{{(2x + 1)}^4}}} = 1\\
\to {(2x + 1)^{2014}} = 1\\
\to \left| {2x + 1} \right| = 1\\
\Leftrightarrow \left[ \begin{array}{l}
2x + 1 = 1\\
2x + 1 = - 1
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x = 0\\
2x = - 2
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = - 1
\end{array} \right.
\end{array}\)