Đáp án:
$\begin{array}{l}
a.\dfrac{1}{f} = \dfrac{1}{d} + \dfrac{1}{{d'}}\\
b.\dfrac{1}{f} = \dfrac{1}{d} - \dfrac{1}{{d'}}
\end{array}$
Giải thích các bước giải:
a. Ta có:
$\begin{array}{l}
\Delta A'B'O \sim \Delta ABO:\\
\dfrac{{A'B'}}{{AB}} = \dfrac{{A'O}}{{AO}} = \dfrac{{d'}}{d}\left( 1 \right)\\
\Delta A'B'F \sim \Delta OIF':\\
\dfrac{{A'B'}}{{OI}} = \dfrac{{A'F'}}{{OF'}} = \dfrac{{OA' - OF'}}{{OF'}} = \dfrac{{d' - f}}{f}\left( 2 \right)\\
OI = AB\left( 3 \right)\\
\left( 1 \right),\left( 2 \right),\left( 3 \right) \Rightarrow \dfrac{{d'}}{d} = \dfrac{{d' - f}}{f} \Leftrightarrow \dfrac{1}{f} = \dfrac{1}{d} + \dfrac{1}{{d'}}\left( {dpcm} \right)
\end{array}$
b. Ta có:
$\begin{array}{l}
\Delta A'B'O \sim \Delta ABO:\\
\dfrac{{A'B'}}{{AB}} = \dfrac{{A'O}}{{AO}} = \dfrac{{d'}}{d}\left( 1 \right)\\
\Delta A'B'F \sim \Delta OIF':\\
\dfrac{{A'B'}}{{OI}} = \dfrac{{A'F'}}{{OF'}} = \dfrac{{OA' + OF'}}{{OF'}} = \dfrac{{d' + f}}{f}\left( 2 \right)\\
OI = AB\left( 3 \right)\\
\left( 1 \right),\left( 2 \right),\left( 3 \right) \Rightarrow \dfrac{{d'}}{d} = \dfrac{{d' + f}}{f} \Leftrightarrow \dfrac{1}{f} = \dfrac{1}{d} - \dfrac{1}{{d'}}\left( {dpcm} \right)
\end{array}$