b, = √5 - $\sqrt[]{3-|2\sqrt{5}-3|}$ = √5 - $\sqrt[]{6-2\sqrt{5}}$ = $\sqrt[]{5}$ - | $\sqrt[]{5}$ - 1|
= $\sqrt[]{5}$ - $\sqrt[]{5}$ + 1 = 1
c, = $\sqrt[]{(2+\sqrt{2})^{2}}$ . $\sqrt[]{4-(2+\sqrt{2}) }$
=( 2+ `\sqrt{2}`).$\sqrt[]{2-\sqrt{2}}$
= `\sqrt{4-2\sqrt{2}}`
d, = (3- $\sqrt[]{5}$ ).$\sqrt[]{(3-\sqrt{5})(3+\sqrt{5})}$ + ($\sqrt[]{3-\sqrt{5}}$ ).$\sqrt[]{(3-\sqrt{5})(3+\sqrt{5}) }$
= 2$\sqrt[]{3-\sqrt{5}}$ + 2$\sqrt[]{3+\sqrt{5} }$ = 2$\sqrt[]{(3-\sqrt{5})(3+\sqrt{5})}$
= 2.2=4