Đáp án:
\(\begin{array}{l}
1,\\
a,\\
A = 12\\
b,\\
C = 2\\
c,\\
D = 2\sqrt 3 \\
2,\\
a,\\
x = - 28\\
b,\\
x = 9\\
c,\\
Phương\,\,trình\,\,vô\,\,nghiệm
\end{array}\)
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
1,\\
a,\\
A = \left( {3\sqrt {50} - 5\sqrt {18} + 3\sqrt 8 } \right).\sqrt 2 \\
= \left( {3\sqrt {25.2} - 5\sqrt {9.2} + 3\sqrt {4.2} } \right).\sqrt 2 \\
= \left( {3\sqrt {{5^2}.2} - 5\sqrt {{3^2}.2} + 3\sqrt {{2^2}.2} } \right).\sqrt 2 \\
= \left( {3.5\sqrt 2 - 5.3\sqrt 2 + 3.2\sqrt 2 } \right).\sqrt 2 \\
= \left( {15\sqrt 2 - 15\sqrt 2 + 6\sqrt 2 } \right).\sqrt 2 \\
= 6\sqrt 2 .\sqrt 2 \\
= 6.2 = 12\\
b,\\
C = \dfrac{1}{{\sqrt 5 - 2}} + \dfrac{{\sqrt {10} - \sqrt 5 }}{{1 - \sqrt 2 }}\\
= \dfrac{{\sqrt 5 + 2}}{{\left( {\sqrt 5 - 2} \right)\left( {\sqrt 5 + 2} \right)}} + \dfrac{{\sqrt {5.2} - \sqrt 5 }}{{1 - \sqrt 2 }}\\
= \dfrac{{\sqrt 5 + 2}}{{{{\sqrt 5 }^2} - {2^2}}} + \dfrac{{\sqrt 5 .\left( {\sqrt 2 - 1} \right)}}{{1 - \sqrt 2 }}\\
= \dfrac{{\sqrt 5 + 2}}{1} + \dfrac{{\sqrt 5 \left( {\sqrt 2 - 1} \right)}}{{ - \left( {\sqrt 2 - 1} \right)}}\\
= \sqrt 5 + 2 - \sqrt 5 \\
= 2\\
c,\\
D = \sqrt {5 - \sqrt {13 + 4\sqrt 3 } } + \sqrt {3 + \sqrt {13 + 4\sqrt 3 } } \\
= \sqrt {5 - \sqrt {12 + 4\sqrt 3 + 1} } + \sqrt {3 + \sqrt {12 + 4\sqrt 3 + 1} } \\
= \sqrt {5 - \sqrt {{{\left( {2\sqrt 3 } \right)}^2} + 2.2\sqrt 3 .1 + {1^2}} } + \sqrt {3 + \sqrt {{{\left( {2\sqrt 3 } \right)}^2} + 2.2\sqrt 3 .1 + {1^2}} } \\
= \sqrt {5 - \sqrt {{{\left( {2\sqrt 3 + 1} \right)}^2}} } + \sqrt {3 + \sqrt {{{\left( {2\sqrt 3 + 1} \right)}^2}} } \\
= \sqrt {5 - \left| {2\sqrt 3 + 1} \right|} + \sqrt {3 + \left| {2\sqrt 3 + 1} \right|} \\
= \sqrt {5 - \left( {2\sqrt 3 + 1} \right)} + \sqrt {3 + \left( {2\sqrt 3 + 1} \right)} \\
= \sqrt {4 - 2\sqrt 3 } + \sqrt {4 + 2\sqrt 3 } \\
= \sqrt {3 - 2\sqrt 3 + 1} + \sqrt {3 + 2\sqrt 3 + 1} \\
= \sqrt {{{\sqrt 3 }^2} - 2.\sqrt 3 .1 + {1^2}} + \sqrt {{{\sqrt 3 }^2} + 2.\sqrt 3 .1 + {1^2}} \\
= \sqrt {{{\left( {\sqrt 3 - 1} \right)}^2}} + \sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} \\
= \left| {\sqrt 3 - 1} \right| + \left| {\sqrt 3 + 1} \right|\\
= \sqrt 3 - 1 + \sqrt 3 + 1\\
= 2\sqrt 3 \\
2,\\
a,\\
DKXD:\,\,\,4 - 5x \ge 0 \Leftrightarrow 5x \le 4 \Leftrightarrow x \le \dfrac{4}{5}\\
\sqrt {4 - 5x} = 12\\
\Leftrightarrow 4 - 5x = {12^2}\\
\Leftrightarrow 4 - 5x = 144\\
\Leftrightarrow 5x = - 140\\
\Leftrightarrow x = - 28\\
b,\\
DKXD:\,\,\,x \ge 5\\
\sqrt {4x - 20} - \dfrac{1}{3}\sqrt {9x - 45} + \sqrt {x - 5} = 4\\
\Leftrightarrow \sqrt {4\left( {x - 5} \right)} - \dfrac{1}{3}\sqrt {9\left( {x - 5} \right)} + \sqrt {x - 5} = 4\\
\Leftrightarrow \sqrt {{2^2}\left( {x - 5} \right)} - \dfrac{1}{3}\sqrt {{3^2}.\left( {x - 5} \right)} + \sqrt {x - 5} = 4\\
\Leftrightarrow 2\sqrt {x - 5} - \dfrac{1}{3}.3\sqrt {x - 5} + \sqrt {x - 5} = 4\\
\Leftrightarrow 2\sqrt {x - 5} - \sqrt {x - 5} + \sqrt {x - 5} = 4\\
\Leftrightarrow 2\sqrt {x - 5} = 4\\
\Leftrightarrow \sqrt {x - 5} = 2\\
\Leftrightarrow x - 5 = {2^2}\\
\Leftrightarrow x - 5 = 4\\
\Leftrightarrow x = 9\\
c,\\
DKXD:\,\,\,\,x \ge 1\\
\sqrt {x + 3 - 4\sqrt {x - 1} } + \sqrt {x + 8 - 6\sqrt {x - 1} } = 0\\
\Leftrightarrow \sqrt {\left( {x - 1} \right) - 4\sqrt {x - 1} + 4} + \sqrt {\left( {x - 1} \right) - 6\sqrt {x - 1} + 9} = 0\\
\Leftrightarrow \sqrt {{{\sqrt {x - 1} }^2} - 2.\sqrt {x - 1} .2 + {2^2}} + \sqrt {{{\sqrt {x - 1} }^2} - 2.\sqrt {x - 1} .3 + {3^2}} = 0\\
\Leftrightarrow \sqrt {{{\left( {\sqrt {x - 1} - 2} \right)}^2}} + \sqrt {{{\left( {\sqrt {x - 1} - 3} \right)}^2}} = 0\\
\Leftrightarrow \left| {\sqrt {x - 1} - 2} \right| + \left| {\sqrt {x - 1} - 3} \right| = 0\\
\left| {\sqrt {x - 1} - 2} \right| \ge 0,\,\,\,\forall x\\
\left| {\sqrt {x - 1} - 3} \right| \ge 0,\,\,\,\forall x\\
\Rightarrow \left| {\sqrt {x - 1} - 2} \right| + \left| {\sqrt {x - 1} - 3} \right| \ge 0,\,\,\,\forall x\\
\Rightarrow \left\{ \begin{array}{l}
\left| {\sqrt {x - 1} - 2} \right| = 0\\
\left| {\sqrt {x - 1} - 3} \right| = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\sqrt {x - 1} - 2 = 0\\
\sqrt {x - 1} - 3 = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\sqrt {x - 1} = 2\\
\sqrt {x - 1} = 3
\end{array} \right.\\
\Rightarrow Phương\,\,trình\,\,vô\,\,nghiệm
\end{array}\)