Đáp án:
\[S = \left[ { - \frac{3}{4};0} \right] \cup \left[ {\frac{{\sqrt 3 }}{2}; + \infty } \right)\]
Giải thích các bước giải:
ĐKXĐ: \(x \ge - 1\)
Ta có:
\(\begin{array}{l}
4{x^2} + 6x \ge 3\left[ {\left( {2x + 1} \right)\sqrt {x + 1} - 1} \right]\\
\Leftrightarrow 4{x^2} + 6x \ge 3\left( {2x + 1} \right)\sqrt {x + 1} - 3\\
\Leftrightarrow \left( {4{x^2} + 6x + 3} \right) - 3\left( {2x + 1} \right)\sqrt {x + 1} \ge 0\\
\Leftrightarrow \left( {4{x^2} + 4x + 1} \right) + 2\left( {x + 1} \right) - 3\left( {2x + 1} \right)\sqrt {x + 1} \ge 0\\
\Leftrightarrow {\left( {2x + 1} \right)^2} + 2\left( {x + 1} \right) - 3\left( {2x + 1} \right)\sqrt {x + 1} \ge 0\\
\Leftrightarrow \left[ {{{\left( {2x + 1} \right)}^2} - \left( {2x + 1} \right)\sqrt {x + 1} } \right] - \left[ {2\left( {2x + 1} \right)\sqrt {x + 1} - 2\left( {x + 1} \right)} \right] \ge 0\\
\Leftrightarrow \left( {2x + 1} \right)\left( {\left( {2x + 1} \right) - \sqrt {x + 1} } \right) - 2\sqrt {x + 1} \left( {\left( {2x + 1} \right) - \sqrt {x + 1} } \right) \ge 0\\
\Leftrightarrow \left( {\left( {2x + 1} \right) - \sqrt {x + 1} } \right)\left( {\left( {2x + 1} \right) - 2\sqrt {x + 1} } \right) \ge 0\\
\Leftrightarrow \left[ \begin{array}{l}
2x + 1 \ge 2\sqrt {x + 1} \\
2x + 1 \le \sqrt {x + 1}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
2x + 1 \ge 0\\
4{x^2} + 4x + 1 \ge 4x + 4
\end{array} \right.\\
4{x^2} + 4x + 1 \le x + 1
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x \ge - \frac{1}{2}\\
4{x^2} \ge 3
\end{array} \right.\\
4{x^2} + 3x \le 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x \ge - \frac{1}{2}\\
\left[ \begin{array}{l}
x \ge \frac{{\sqrt 3 }}{2}\\
x \le - \frac{{\sqrt 3 }}{2}
\end{array} \right.
\end{array} \right.\\
- \frac{3}{4} \le x \le 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x \ge \frac{{\sqrt 3 }}{2}\\
- \frac{3}{4} \le x \le 0
\end{array} \right.
\end{array}\)
Vậy tập nghiệm của bất phương trình đã cho là: \(S = \left[ { - \frac{3}{4};0} \right] \cup \left[ {\frac{{\sqrt 3 }}{2}; + \infty } \right)\)