Đáp án:
Giải thích các bước giải:
1) Tam giác ABD vuông cân => \(\widehat{BAD}=\widehat{ABD}=45^{o}\)
Tam giác ACE vuông cân => \(\widehat{CAE}=\widehat{ACE}=45^{o}\)
=>\(\widehat{DAE}=\widehat{BAD}+\widehat{A}+\widehat{CAE}=45^{o}+90^{o}+45^{o}=180^{o}\)
=> 3 điểm A,D,E thẳng hàng
2) Ta có `AM=MC`
`AE=EC`
`=>` ME là đường trung trực của AC.
`=> ME \bot AC`
Chứng minh tương tự: `DM \bot AB`
3) Có ME là đường trung trực của AC (câu b)
Mà ▲AEC vuông cân tại E => EM là tia phân giác AEC
`=> \hat{AEM} = (90)/2 = 45 độ. (*)
Ta lại có IMKA là hình chữ nhật => IMK = 90 độ (**)
Từ (*) và (**) => ▲DME vuông cần tại M