Đáp án:
$\displaystyle \begin{array}{{>{\displaystyle}l}} a) \ x=3\ hoặc\ x=4\\ b) \ x=\frac{-1}{4} \end{array}$
Giải thích các bước giải:
$\displaystyle \begin{array}{{>{\displaystyle}l}} a) \ x-3=( 3-x)^{2}\\ \Leftrightarrow ( x-3) -( x-3)^{2} =0\\ \Leftrightarrow ( x-3)( 1-x+3) =0\\ \Leftrightarrow ( x-3)( -x+4) =0\\ \Leftrightarrow [_{-x+4=0}^{x-3=0} \Leftrightarrow [_{x=4}^{x=3}\\ \\ b) \ x^{3} +\frac{3}{2} x^{2} +\frac{3}{4} x+\frac{1}{8} =\frac{1}{64}\\ \\ \Leftrightarrow \left( x+\frac{1}{2}\right)^{3} =\left(\frac{1}{4}\right)^{3}\\ \\ \Leftrightarrow x+\frac{1}{2} =\frac{1}{4}\\ \\ \Leftrightarrow x=\frac{-1}{4} \end{array}$