Ta có
$\dfrac{201-x}{99} + \dfrac{203-x}{97} - \dfrac{205 - x}{95} + 3 = 0$
$<-> \dfrac{201-x}{99} + 1 + \dfrac{203 - x}{97} + 1 - \dfrac{205-x}{95} - 1 + 2 = 0$
$<-> \dfrac{300-x}{99} + \dfrac{300-x}{97} - \dfrac{300-x}{95} + 2 = 0$
$<-> (300-x) \left( \dfrac{1}{99} + \dfrac{1}{97} - \dfrac{1}{95} \right) = -2$
$<-> 300-x = -\dfrac{1824570}{9017}$
$<-> x = \dfrac{4529670}{9017}$
Vậy $x = \dfrac{4529670}{9017}$.