Đáp án:
$\begin{array}{l}
a)Dkxd:x\# 0;x\# 5\\
\dfrac{{{x^2} - 10x + 25}}{{{x^2} - 5x}} = 0\\
\Leftrightarrow \dfrac{{{{\left( {x - 5} \right)}^2}}}{{x\left( {x - 5} \right)}} = 0\\
\Leftrightarrow x = 5\left( {ktm} \right)\\
Vậy\,x \in \emptyset \\
b)Dkxd:x\# - 3\\
\dfrac{{{x^3} + 3x - {x^2} - 3}}{{{x^3} + 3{x^2} + 3x + 9}} = - 1\\
\Leftrightarrow \dfrac{{x\left( {{x^2} + 3} \right) - \left( {{x^2} + 3} \right)}}{{\left( {x + 3} \right)\left( {{x^2} + 3} \right)}} = - 1\\
\Leftrightarrow \dfrac{{\left( {{x^2} + 3} \right)\left( {x - 1} \right)}}{{\left( {x + 3} \right)\left( {{x^2} + 3} \right)}} = - 1\\
\Leftrightarrow \dfrac{{x - 1}}{{x + 3}} = - 1\\
\Leftrightarrow x + 3 = 1 - x\\
\Leftrightarrow 2x = - 2\\
\Leftrightarrow x = - 1\left( {tmdk} \right)\\
Vậy\,x = - 1\\
c)\dfrac{{{x^4} - {x^3} - x + 1}}{{{x^4} + {x^3} + 3{x^2} + 2x + 2}}\\
= \dfrac{{\left( {x - 1} \right)\left( {{x^3} - 1} \right)}}{{{x^4} + {x^3} + {x^2} + 2{x^2} + 2x + 2}}\\
= \dfrac{{\left( {x - 1} \right)\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}{{\left( {{x^2} + x + 1} \right).{x^2} + 2\left( {{x^2} + x + 1} \right)}}\\
= \dfrac{{{{\left( {x - 1} \right)}^2}\left( {{x^2} + x + 1} \right)}}{{\left( {{x^2} + x + 1} \right)\left( {{x^2} + 2} \right)}}\\
= \dfrac{{{{\left( {x - 1} \right)}^2}}}{{{x^2} + 2}} > 0\left( {khi:x\# 1} \right)\\
d)\dfrac{{ - 2{x^2} - 2}}{{{x^4} + 2{x^3} + 6{x^2} + 2x + 5}}\\
= \dfrac{{ - 2\left( {{x^2} + 1} \right)}}{{{x^4} + 6{x^2} + 5 + 2{x^3} + 2x}}\\
= \dfrac{{ - 2\left( {{x^2} + 1} \right)}}{{\left( {{x^2} + 1} \right)\left( {{x^2} + 5} \right) + 2x\left( {{x^2} + 1} \right)}}\\
= \dfrac{{ - 2\left( {{x^2} + 1} \right)}}{{\left( {{x^2} + 1} \right)\left( {{x^2} + 5 + 2x} \right)}}\\
= \dfrac{{ - 2}}{{{x^2} + 2x + 5}}\\
= \dfrac{{ - 2}}{{{{\left( {x + 1} \right)}^2} + 4}} < 0\left( {do:{{\left( {x + 1} \right)}^2} + 4 > 0} \right)
\end{array}$